Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience
نویسندگان
چکیده
Tampering attacks are cryptanalytic attacks on the implementation of cryptographic algorithms (e.g., smart cards), where an adversary introduces faults with the hope that the tampered device will reveal secret information. Inspired by the work of Ishai et al. [Eurocrypt’06], we propose a compiler that transforms any circuit into a new circuit with the same functionality, but which is resilient against a welldefined and powerful tampering adversary. More concretely, our transformed circuits remain secure even if the adversary can adaptively tamper with every wire in the circuit as long as the tampering fails with some probability δ > 0. This additional requirement is motivated by practical tampering attacks, where it is often difficult to guarantee the success of a specific attack. Formally, we show that a q-query tampering attack against the transformed circuit can be “simulated” with only black-box access to the original circuit and log(q) bits of additional auxiliary information. Thus, if the implemented cryptographic scheme is secure against log(q) bits of leakage, then our implementation is tamper-proof in the above sense. Surprisingly, allowing for this small amount of information leakage allows for much more efficient compilers, which moreover do not require randomness during evaluation. Similar to earlier works our compiler requires small, stateless and computation-independent tamper-proof gadgets. Thus, our result can be interpreted as reducing the problem of shielding arbitrary complex computation to protecting simple components.
منابع مشابه
A new security proof for FMNV continuous non-malleable encoding scheme
A non-malleable code is a variant of an encoding scheme which is resilient to tampering attacks. The main idea behind non-malleable coding is that the adversary should not be able to obtain any valuable information about the message. Non-malleable codes are used in tamper-resilient cryptography and protecting memories against tampering attacks. Many different types of non-malleability have alre...
متن کاملTamper Resilient Cryptography Without Self-Destruct
We initiate a general study of schemes resilient to both tampering and leakage attacks. Tampering attacks are powerful cryptanalytic attacks where an adversary can change the secret state and observes the effect of such changes at the output. Our contributions are outlined below: 1. We propose a general construction showing that any cryptographic primitive where the secret key can be chosen as ...
متن کاملGarbled Circuits for Leakage-Resilience: Hardware Implementation and Evaluation of One-Time Programs
The power of side-channel leakage attacks on cryptographic implementations is evident. Today’s practical defenses are typically attackspecific countermeasures against certain classes of side-channel attacks. The demand for a more general solution has given rise to the recent theoretical research that aims to build provably leakage-resilient cryptography. This direction is, however, very new and...
متن کاملGarbled Circuits for Leakage-Resilience: Hardware Implementation and Evaluation of One-Time Programs - (Full Version)
The power of side-channel leakage attacks on cryptographic implementations is evident. Today’s practical defenses are typically attack-specific countermeasures against certain classes of side-channel attacks. The demand for a more general solution has given rise to the recent theoretical research that aims to build provably leakage-resilient cryptography. This direction is, however, very new an...
متن کاملTamper Resilient Circuits: The Adversary at the Gates
We initiate the investigation of gate-tampering attacks against cryptographic circuits. Our model is motivated by the plausibility of tampering directly with circuit gates and by the increasing use of tamper resilient gates among the known constructions that are shown to be resilient against wiretampering adversaries. We prove that gate-tampering is strictly stronger than wire-tampering. On the...
متن کامل